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Domain growth on self-similar structures
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The behavior of the spherical Ginzburg-Landau model on a class of nontranslationally invariant, fractal
lattices is investigated in the cases of conserved and nonconserved Langevin dynamics. Interestingly, the static
and dynamic properties can be expressed by means of three exponents characterizing these structures: the
embedding dimensionsd, the random walk exponentdw , and the spectral dimensionds . An order-disorder
transition occurs ifds.2. Explicit solutions show that the domain size evolves with time asR(t);t1/dw in the
nonconserved case and asR(t);t1/2dw in the conserved case, whereas the height of the peak of the structure
factor increases in time astds/2 in the first case and astds/4 in the second while the system orders. Finally we
derive the scaling function for the nonconserved dynamics and the multiscaling function for the conserved
dynamics.@S1063-651X~96!03910-4#

PACS number~s!: 64.60.Cn, 64.60.Ak, 64.60.My, 47.53.1n
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A system, described by an order parameter, followin
quench from a high temperature disordered phase to a
temperature ordered phase undergoes a coarsening pr
during which the domains of the different phases comp
and grow in magnitude. During the late stage of the order
one observes patterns of characteristic length scaleR(t), in-
creasing in time in a power like fashionR(t);t1/z and the
correlation functions obey dynamical scaling@1#. The expo-
nentz has a rather universal value and in translationally
variant systemsz52 for a nonconserved order parame
~NCOP! evolutions,z53 for scalar conserved order param
eter ~COP! and z54 for vector COP. On the contrary, th
phase separation kinetics in nontranslationally-invariant
tices remains almost unexplored, in spite of its interest
noticeable class of models not endowed with homogeneit
the one defined on deterministic fractal supports, wh
translational symmetry is absent, but another property,
self-similarity is at work. Interestingly, whereas regular la
tices are characterized by a single dimensiond, on fractal
structures at least three different dimensions are requi
These are the embedding dimensiond, the fractal dimension
df of the lattice, and the spectral dimensionds , which de-
scribes the low frequency behavior of the density of vib
tional modes; on standard lattices one findsdf5ds to coin-
cide with the Euclidean dimensiond, whereasdw52.

In the present paper we derive the exact solution o
Ginzburg-Landau~GL! model on a fractal lattice, which we
believe to be of general interest because it is representa
of systems with noninteger spectral dimension, such as st
turally disordered systems, percolation clusters, etc. The
culiarity of the lattice manifests itself in various ways a
leads to nonrational growth exponents different from tho
known in the Euclidean case. Our results, besides provid
an explicit realization of domain growth on fractal network
may shed some light on relaxation phenomena occurring
complex structures.
551063-651X/97/55~2!/1311~4!/$10.00
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We focus on the static and dynamical properties o
spherical version of GL model@2# on Sierpinski gaskets
~SG!, which can be constructed recursively@3–6# for arbi-
trary embedding dimensiond, and have fractal dimension
df5 ln(d11)/ln2. The model, which is equivalent to the ve
tor O(N) model in the largeN limit, can be solved as we
show below and has the merit of providing useful insights
the general aspects of the physics of growth processe
nonperiodic structures.

Let us assume the order parameterf i , to be defined at
each sitei of SG formed byN5(d11)n hypertetrahedra,
wheren represents the level of construction of the lattice

Accordingly to the GL approach we consider the evo
tion of f i after a quench at temperatureTf to be governed by
the equation

]f i~ t !

]t
52Mil

dH@$f i%#

df l
1h i~ t !52Mil FD l jf j~ t !1rf l~ t !

1
g

N(
k51

N

fk
2~ t !f l~ t !G1h i~ t !, ~1!

where summation over repeated latin indices is assumed
the present paper we shall consider the relevant caser,0
andg.0, because it accounts for phase separation.

The matrixD is the discrete version of the Laplacian o
erator defined on the SG of embedding dimensiond, while
M is a kinetic operator taking the formGd i l for NCOP and
2GD i l for COP, whereG is a kinetic coefficient. Through
the diffusive couplingD each cell is coupled on the SG to i
(d11) nearest neighbors with the exception of the (d11)
end vertices of the whole structure which are coupled only
d neighbors.

The noiseh i(t) is assumed to be Gaussian with zero a
erage and variance satisfying the fluctuation-dissipation r
tion ^h i(t)h j (t8)&52MilTfd l jd(t2t8), whereTf is the tem-
1311 © 1997 The American Physical Society



tra
a

s-

de

n

ns

ity
ra
ur

lie

it
e

in

e
-
ll
e

te
ra
s

t
t

long

s a
fs.
in
n-

an

ro-
for
n

n-
es
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perature of the final state. Due to self-similarity, the spec
properties of the operatorD can be obtained by employing
recursive algorithm@3,4#. The eigenvalue spectrum ofD at
the level of construction (n11) contains the one at leveln
plus new eigenvalues generated through the map

ln5~d132ln11!ln11 , ~2!

wherelnP@0,d13#. After reordering the eigenvalues in a
cending order and renaming themea we employ the eigen-
vectors associated with the linear problem2D i j uj

a5eaui
a

and expand the field as a linear superposition of mo
f i(t)5(a50

N21f̃a(t)ui
a . Within the largeN limit @7# we ob-

tain the following equation for the equal-time correlatio
C(ea ,t)5^uf̃a

2(t)u&:

d

dt
C~ea ,t !522ea

pG@ea1r1gS~ t !#C~ea ,t !12Gea
pTf ,

~3!

wherep50 for NCOP andp51 for COP, respectively and
we have defined

S~ t ![
1

N(
a50

N21

C~ea ,t !5
1

N(
i51

N

^f i
2~ t !&. ~4!

By the symbol̂ .& we denote averages over initial conditio
and thermal histories.

The static equilibrium properties are found from Eq.~3!
by determining self-consistently

lim
t→`

S~ t !5S`5
Tf

N (
a50

N21
1

ea1r1gS̀
. ~5!

Within the spherical model the vanishing of the quant
r1gS̀ asN→` signals the appearance of the low tempe
ture ordered phase below a critical temperat
Tc52r /@gB(0)#, whereB(0)5(1/N)(a51

N21ea
21 @2#. In turn,

the existence of a nonvanishing critical temperature imp
the finiteness ofB(0) asN→`.

On the SG we have obtained the behavior ofB(0) in two
different ways: first we observe that the sum picks out
largest contribution from the smallest elements of the sp
trum, which can be approximated forn sufficiently large by

ea;E0

1

~d13!~n2a! 5E0S 2a

2nD
dw

, ~6!

whereE0 is an uninteresting constant. The last equality
Eq. ~6! defines the exponentdw5 ln(d13)/ln2, which coin-
cides with the random walk fractal dimension on the SG@3#.
Since the degeneracy ofea is proportional to
(d11)a52adf one sees thatB(0) diverges asL (dw2df ),
where L5N1/df is the linear size of the system in lattic
units, sinceds52df /dw,2 for all d. Such a scaling is con
firmed by an exact numerical calculation, see Fig. 1. Fina
we have derivedB(0) by means of an approximation for th
density of low-frequency states of the formr(e);eds/221.
After taking the thermodynamic limit the sum over discre
eigenvalues was converted into the integ
B(0)5*emin

de r(e)/e, where for large systems the smalle
l

s

-
e

s

s
c-

y

l
t

positive eigenvalueemin;E0L
2dw leading to the result

B(0);emin
ds/221

;Ldw2df for ds,2. The argument shows tha
even a smoothed expression forr(e) leads to the correc
answer.

We must emphasize that, within the spherical model,Tc is
lowered down to zero and the ordered phase shrinks a
the line Tf50, for all SG of arbitrary embeddingd; the
existence of a finite temperature phase transition require
spectral dimension larger than two in agreement with Re
@5,8#. This result is a consequence of a generalized Merm
theorem@9# , which states that a continuous symmetry ca
not be spontaneously broken inds<2.

Although the dynamical properties in the NCOP case c
be determined exactly for arbitrary timet, we shall consider
only the late scaling regime. Since Eq.~3! is formally linear,
it can be integrated yielding forTf50

C~ea ,t !5C~ea,0!exp$22G@eat1Q~ t !#%. ~7!

The auxiliary functionQ(t)5*0
t dt8@r1gS(t8)#, required

in order to derive the scaling behavior ofC(ea ,t) is deter-
mined by

dQ~ t !

dt
5r1gJd~ t !exp2@2GQ~ t !#, ~8!

where Jd(t), for uncorrelated initial conditions
C(ea,0)5C0, is given by

Jd~ t !5
1

N(
a

C0exp@22Geat#;C0E de r~e!exp2@2Get#

;C0Kdt
2ds/2, ~9!

whereKd is a dimensionality dependent constant. To p
ceed analytically we have employed the scaling ansatz
r(e). Asymptotically we find that the correlation functio
assumes the form

C~ea ,t !;C0t
ds/2exp2@2Geat#. ~10!

FIG. 1. Log-log plot of the sumB(0) as a function of the linear
sizeL of the system for different values of the embedding dime
siond: (d52,d53, d510). The dashed lines represent the curv
Ldw2df for each case.
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Notice that, since the peak of Eq.~10! coincides with the zero
component of the structure factor, it grows in time astds/2. In
virtue of Eq.~6! we can rewrite Eq.~10! in scaling form

C~ea ,t !;C0t
ds/2exp2@2GE0q

dwt#, ~11!

where we have introduced the quantityq5(2a/2n)5(m/L)
in order to stress the striking analogy with the standard
tice case where a similar formula holds after replac
ds→d anddw→2. If we insist in the parallel with the stan
dard case we identify the prefactortds/2 with Rdf and deduce
R(t);t1/dw, which represents the NCOP evolution law o
fractal supports. This slowing down of the growth is caus
by the delay of the diffusing particles due to the fractal str
ture. Let us notice thatq is inversely proportional to the
localization length of a state@10#. This hypothesis is cor-
roborated by calculating numerically the quantity

R2~ t !5
( i j ~ i2 j !2^f i~ t !f j~ t !&

( i j ^f i~ t !f j~ t !&
, ~12!

whose behavior, displayed in Fig. 2, shows the predic
scaling. To summarize, the NCOP agrees with the ordin
scaling hypothesis that the typical domain sizeR(t) is the
only relevant length during the growth and the structu
function has the formC(e,t);R(t)dfF@e1/dwR(t)#, with
F(x) a universal time independent shape function.

Let us turn, now, on COP dynamics by calculating t
structure factor

C~ea ,t !5C0e
2GeM

2 te22G~ea2eM !2t, ~13!

where eM52Q(t)/2t represents the position of the max
mum ofC(ea ,t) and changes with time. Employing a sadd
point estimate of the integrals we obtain from Eq.~4! the
following approximation for the structure function:

C~ea ,t !;C0@ t
ds/4~ lnt !~22ds!/4#12~12x!2, ~14!

wherex5ea /eM . The peakeM evolves in time as

FIG. 2. Domain sizeR2(t) vs t for n56 ~dots!, n57 ~dashed!,
n58 ~solid!, andt2/dw ~short dashed line!. In the inset is shown the
peak ofC(e0 ,t) vs t in the NCOP,d52 case and the dashed lin
representstds/2.
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e

eM~ t !5F ds
8G

lnt1
22ds
ds

ln~ lnt !

t
G 1/2. ~15!

Since Eq.~15! shows that each mode evolves with its ow
exponent, the COP dynamics is characterized by multis
ing. More interestingly we observe from Fig. 3 that th
height of the peak grows with the exponentds/4 on the av-
erage, but displays large deviations from a pure power
reflecting the existence of singularities in the density
states at all energy scales, a feature not observed on re
lattices.

All the results we have discussed are in total agreem
with a renormalization group@2# analysis which we have
carried out and will be presented elsewhere.

In conclusion, we obtain growth laws characterized by
set of noninteger exponents for an exactly solvable mo
with vector order parameter. For the NCOP we confirm
dynamic scaling hypothesis and derive explicitly the scal
form for the structure function@see Eq.~10!#, whereas for the
COP we generalize the multiscaling concept. We believe
our findings go beyond the present study and may repre
a starting point to understanding phase separation occur
in complex structures, such as porous media, percola
clusters etc. Regarding the scalar version of the GL mo
we trust that the growth exponentz should remaindw for
NCOP, whereas for COP it would be of interest to inves
gate its value on self-similar lattices. On the other hand
do not expect to observe in real systems properties relate
the deviation of the density of states from a smooth behav
because the latters are characterized by a less singular
sity of states than deterministic fractals whose spectrum c
tains a high degree of correlation which manifests its
through strong correlations between different scales. On q
sicrystal lattices, instead, one should observe oscillation
the peak height due to the singular spectrum, butdw52 and
ds5d.

We thank Ray Kapral for discussions. This work was su
ported by grants of the INFM and INFN.

FIG. 3. Peak ofC(eM ,t) vs t in the COP,d52 case and
tds/4@ ln(t)#(22ds)/4 ~dashed line! @see Eq.~14!#. In the inset we show
eM(t) vs t.
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