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Domain growth on self-similar structures
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The behavior of the spherical Ginzburg-Landau model on a class of nontranslationally invariant, fractal
lattices is investigated in the cases of conserved and nonconserved Langevin dynamics. Interestingly, the static
and dynamic properties can be expressed by means of three exponents characterizing these structures: the
embedding dimensiond, the random walk exponemt,, and the spectral dimensiahy. An order-disorder
transition occurs iflg>2. Explicit solutions show that the domain size evolves with tim&@3~t¥w in the
nonconserved case and Rgt) ~tY?w in the conserved case, whereas the height of the peak of the structure
factor increases in time a&/ in the first case and a8¢* in the second while the system orders. Finally we
derive the scaling function for the nonconserved dynamics and the multiscaling function for the conserved
dynamics[S1063-651X96)03910-4

PACS numbg(s): 64.60.Cn, 64.60.Ak, 64.60.My, 47.53n

A system, described by an order parameter, following a We focus on the static and dynamical properties of a
guench from a high temperature disordered phase to a lowpherical version of GL moddl2] on Sierpinski gaskets
temperature ordered phase undergoes a coarsening procé§§), which can be constructed recursivéB—6] for arbi-
during which the domains of the different phases competérary embedding dimensiod, and have fractal dimension
and grow in magnitude. During the late stage of the orderingls=In(d+1)/In2. The model, which is equivalent to the vec-
one observes patterns of characteristic length sRél, in-  tor O(N) model in the largeV limit, can be solved as we
creasing in time in a power like fashidR(t)~t'Z and the ~Show below and has the merit of providing useful insights on
correlation functions obey dynamical scalify. The expo- ~the general aspects of the physics of growth processes on
nentz has a rather universal value and in translationally in-"onPeriodic structures. _
variant systemg=2 for a nonconserved order parameter Let us assume the order parameqierr,] to be defined at
(NCOB evolutions,z=3 for scalar conserved order param- each sitei of SG formed byN=(d+1) _hypertetrahedra,
eter (COP and z=4 for vector COP. On the contrary, the wheren represents the level of construction of the lattice.

. L . . ; Accordingly to the GL approach we consider the evolu-
phase separation kinetics in nontranslationally-invariant lat:.
. ) . . o tion of ¢,; after a quench at temperatureto be governed by
tices remains almost unexplored, in spite of its interest. he equati

. . o quation
noticeable class of models not endowed with homogeneity is
the one defined on deterministic fractal supports, where
translational symmetry is absent, but another property, thé?w: -M, M+ 7i()=—M, [A L (1) +1 (1)
self-similarity is at work. Interestingly, whereas regular lat- 9t : Yol ' AAe !
tices are characterized by a single dimensibron fractal N
structures at least three different dimensions are required. +22 2

= ; i ) (1) (1)
These are the embedding dimensthrthe fractal dimension Ni=1
d; of the lattice, and the spectral dimensidg, which de-
scribes the low frequency behavior of the density of vibra-where summation over repeated latin indices is assumed. In
tional modes; on standard lattices one finhs-d to coin-  the present paper we shall consider the relevant cas@
cide with the Euclidean dimensiah whereasd,,=2. andg>0, because it accounts for phase separation.

In the present paper we derive the exact solution of a The matrixA is the discrete version of the Laplacian op-
Ginzburg-LandauGL) model on a fractal lattice, which we erator defined on the SG of embedding dimensipmwhile
believe to be of general interest because it is representatid is a kinetic operator taking the foriis; for NCOP and
of systems with noninteger spectral dimension, such as struc=1"A;; for COP, wherel” is a kinetic coefficient. Through
turally disordered systems, percolation clusters, etc. The pdhe diffusive couplingA each cell is coupled on the SG to its
culiarity of the lattice manifests itself in various ways and (d+1) nearest neighbors with the exception of thiet()
leads to nonrational growth exponents different from thoseend vertices of the whole structure which are coupled only to
known in the Euclidean case. Our results, besides providing neighbors.
an explicit realization of domain growth on fractal networks, The noise;(t) is assumed to be Gaussian with zero av-
may shed some light on relaxation phenomena occurring oarage and variance satisfying the fluctuation-dissipation rela-
complex structures. tion (7;(t) »;(t"))=2M; T;; 8(t—t"), whereT; is the tem-
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perature of the final state. Due to self-similarity, the spectral 100
properties of the operatd can be obtained by employing a :
recursive algorithni3,4]. The eigenvalue spectrum o at BO) [
the level of constructionr(+1) contains the one at level 0]
plus new eigenvalues generated through the map i

Ap=(d+3—=Nnr ) Nns1, (2

where\, e [0,d+ 3]. After reordering the eigenvalues in as-
cending order and renaming thesy) we employ the eigen-
vectors associated with the linear problem;;uj'= €,u;*

and expand the field as a linear superposition of modes i
#i(t)==N"2¢ (t)u®. Within the largeN limit [7] we ob- 001 Ll e
tain the following equation for the equal-time correlation 1o 100 1000

Cleq 1) =(|p2(M)]):

01 3

d FIG. 1. Log-log plot of the sunB(0) as a function of the linear
d_C( €0 )= —2€PT[€e,+r+gS(t)]C(€,,t)+ 2T PT, sizeL _of the system for different values of the embedding dimen-
t siond: (d=2,d=3, d=10). The dashed lines represent the curves
() L% 9 for each case.

wherep=0 for NCOP andp=1 for COP, respectively and

we have defined positive eigenvaluee,,~ EqL leading to the result

B(O)~ei§i’ifl~LdW‘df for dg<2. The argument shows that
N1t 1 N even a smoothed expression fote) leads to the correct

S(t)ENE C(sa,t)=ﬁz (2(1)). (4  answer.

a=0 =1 We must emphasize that, within the spherical mo@igis
lowered down to zero and the ordered phase shrinks along
the line T;=0, for all SG of arbitrary embedding; the
existence of a finite temperature phase transition requires a
spectral dimension larger than two in agreement with Refs.
[5,8]. This result is a consequence of a generalized Mermin

By the symbok.) we denote averages over initial conditions
and thermal histories.

The static equilibrium properties are found from E8)
by determining self-consistently

T.N-2 1 theorem[9] , which states that a continuous symmetry can-
lim S,(t)zsgcz—f _— (5) not be spontaneously brokendg<2.
too Na=o e, +r+gS. Although the dynamical properties in the NCOP case can

- . L . be determined exactly for arbitrary timiewe shall consider
Within the spherical model the vanishing of the quantity oy the late scaling regime. Since E8) is formally linear,
r+gS, asN— signals the appearance of the low tempera-; can be integrated yielding foF;=0
ture ordered phase below a critical temperature

T.=—r/[gB(0)], whereB(0)=(1N)=}_1e,* [2]. In turn, Cle, 1) =Cle 00exp—2I[e t+ QD). (7)
the existence of a nonvanishing critical temperature implies
the finiteness 08(0) asN— . The auxiliary functionQ(t) = f5dt'[r +gS(t")], required

_On the SG we have obtained the behavioBg0) in two i qrger to derive the scaling behavior 6fe,, .t) is deter-
different ways: first we observe that the sum picks out its,iqaq by

largest contribution from the smallest elements of the spec-

trum, which can be approximated forsufficiently large by dQ(t)
1 oa dy i edvexp-[2IQ(1)], (8)
eaNEOW:EO ?) y (6)

where J4(t), for uncorrelated initial conditions
whereE, is an uninteresting constant. The last equality inC(€,,0)=Co, is given by
Eq. (6) defines the exponemt,=In(d+3)/In2, which coin-
cides with the random walk fractal dimension on the [ 1
Since the degeneracy ofe, is proportional to Jd(t)zﬁza: Coexp[—ZFeat]~COJ dep(e)exp—[2l'et]
(d+1)*=229 one sees thaB(0) diverges asL(dw=dn,
where L=N¥ is the linear size of the system in lattice ~CoKgt™ %72, 9)
units, sincedg=2d;/d,,<2 for all d. Such a scaling is con-
firmed by an exact numerical calculation, see Fig. 1. Finallywhere K, is a dimensionality dependent constant. To pro-
we have derive®(0) by means of an approximation for the ceed analytically we have employed the scaling ansatz for
density of low-frequency states of the forpfe)~e%2~ 1. p(e). Asymptotically we find that the correlation function
After taking the thermodynamic limit the sum over discreteassumes the form
eigenvalues was converted into the integral
B(0)=/._ dep(e)/e, where for large systems the smallest C(e, t)~Cotd%exp—[ 2T €, t]. (10)
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FIG. 2. Domain sizeR?(t) vst for n=6 (dot9, n=7 (dashed} t

n=8 (solid), andt?®w (short dashed line In the inset is shown the
peak ofC(eg,t) vst in the NCOP,d=2 case and the dashed line FIG. 3. Peak ofC(ey,t) Vst in the COP,d=2 case and

represents’s?. 94 In(t) 1@ 99 (dashed ling[see Eq(14)]. In the inset we show
em(t) vst.
Notice that, since the peak of Efj0) coincides with the zero .
component of the structure factor, it grows in timet%&. In 2—dg 172
virtue of Eq.(6) we can rewrite Eq10) in scaling form de Int+ ds In(Int)
ew()=| gp t . 19

C(e, ,t)~Cot%exp—[2I'Eoqint], (12)
Since Eq.(15) shows that each mode evolves with its own
where we have introduced the quantify- (2%/2")=(m/L)  exponent, the COP dynamics is characterized by multiscal-
in order to stress the striking analogy with the standard Iating, More interestingly we observe from Fig. 3 that the
tice case where a similar formula holds after replacingheight of the peak grows with the exponeht4 on the av-
ds—d andd,—2. If we insist in the parallel with the stan- erage, but displays large deviations from a pure power law
dard case we identify the prefactf¥ with R% and deduce reflecting the existence of singularities in the density of
R(t)~t", which represents the NCOP evolution law on states at all energy scales, a feature not observed on regular
fractal supports. This slowing down of the growth is causedattices.
by the delay of the diffusing particles due to the fractal struc-  All the results we have discussed are in total agreement
ture. Let us notice that] is inversely proportional to the with a renormalization group2] analysis which we have
localization length of a statfl0]. This hypothesis is cor- carried out and will be presented elsewhere.
roborated by calculating numerically the quantity In conclusion, we obtain growth laws characterized by a
o set of noninteger exponents for an exactly solvable model
R2(t) = (i =) i(D) (1)) with vector order parameter. For the NCOP we confirm the
(gD d())

dynamic scaling hypothesis and derive explicitly the scaling

form for the structure functiopsee Eq.10)], whereas for the
whose behavior, displayed in Fig. 2, shows the predictedOP we generalize the multiscaling concept. We believe that
scaling. To summarize, the NCOP agrees with the ordinarpur findings go beyond the present study and may represent
scaling hypothesis that the typical domain sRé) is the  a starting point to understanding phase separation occurring
only relevant length during the growth and the structurein complex structures, such as porous media, percolation
function has the formC(e,t)~R(t)%F[e¥wR(t)], with  clusters etc. Regarding the scalar version of the GL model

(12

F(x) a universal time independent shape function. we trust that the growth exponentshould remaind,, for
Let us turn, now, on COP dynamics by calculating theNCOP, whereas for COP it would be of interest to investi-
structure factor gate its value on self-similar lattices. On the other hand we
do not expect to observe in real systems properties related to
Cle, ’t):COeZFEate—ZF(sa—eM)Zt' (13)  the deviation of the density of states from a smooth behavior,

because the latters are characterized by a less singular den-
where e,,= —Q(t)/2t represents the position of the maxi- sit_y of states than deterministic fr_actals vyhose spectrum con-
mum ofC(e, ,t) and changes with time. Employingasaddleta'ns a high degree (_)f correlation WhICh manifests itself
point estimate of the integrals we obtain from Ed) the through stro_ng correlauons between different scale_s. Qn qua-
following approximation for the structure function: sicrystal Iatt!ces, instead, one should observe oscillations in

the peak height due to the singular spectrum,dyut2 and
ds=d.
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